翻訳と辞書
Words near each other
・ Malbosc
・ Malbouhans
・ Malbouzon
・ Malbranche
・ Malbrans
・ Malbrouck
・ Malbry
・ Malbrán
・ Malbuisson
・ Malbun
・ Malcah Zeldis
・ Malcanthet
・ Malcanów, Lublin Voivodeship
・ Malcanów, Masovian Voivodeship
・ Malcesine
Malcev algebra
・ Malcev Lie algebra
・ Malcev-admissible algebra
・ Malcha Kalyan Samiti
・ Malcha Mahal
・ Malchand Tiwari
・ Malchapur
・ Malchiel Gruenwald
・ Malchijah
・ Malchik
・ Malchin
・ Malchin am Kummerower See
・ Malchin company
・ Malchin Peak
・ Malchin, Uvs


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Malcev algebra : ウィキペディア英語版
Malcev algebra

In mathematics, a Malcev algebra (or Maltsev algebra or MoufangLie algebra) over a field is a nonassociative algebra that is antisymmetric, so that
:xy = -yx\
and satisfies the Malcev identity
:(xy)(xz) = ((xy)z)x + ((yz)x)x + ((zx)x)y.\
They were first defined by Anatoly Maltsev (1955).
Malcev algebras play a role in the theory of Moufang loops that generalizes the role of Lie algebras in the theory of groups. Namely, just as the tangent space of the identity element of a Lie group forms a Lie algebra, the tangent space of the identity of a smooth Moufang loop forms a Malcev algebra. Moreover, just as a Lie group can be recovered from its Lie algebra under certain supplementary conditions, a smooth Moufang loop can be recovered from its Malcev algebra if certain supplementary conditions hold. For example, this is true for a connected, simply connnected real-analytic Moufang loop.
==Examples==

*Any Lie algebra is a Malcev algebra.
*Any alternative algebra may be made into a Malcev algebra by defining the Malcev product to be ''xy'' − ''yx''.
*The 7-sphere may be given the structure of a smooth Moufang loop by identifying it with the unit octonions. The tangent space of the identity of this Moufang loop may be identified with the 7-dimensional space of imaginary octonions. The imaginary octonions form a Malcev algebra with the Malcev product ''xy'' − ''yx''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Malcev algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.